Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Cell Rep Methods ; 4(9): 100856, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39243752

RESUMEN

The ongoing co-circulation of multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains necessitates advanced methods such as high-throughput multiplex pseudovirus systems for evaluating immune responses to different variants, crucial for developing updated vaccines and neutralizing antibodies (nAbs). We have developed a quadri-fluorescence (qFluo) pseudovirus platform by four fluorescent reporters with different spectra, allowing simultaneous measurement of the nAbs against four variants in a single test. qFluo shows high concordance with the classical single-reporter assay when testing monoclonal antibodies and human plasma. Utilizing qFluo, we assessed the immunogenicities of the spike of BA.5, BQ.1.1, XBB.1.5, and CH.1.1 in hamsters. An analysis of cross-neutralization against 51 variants demonstrated superior protective immunity from XBB.1.5, especially against prevalent strains such as "FLip" and JN.1, compared to BA.5. Our finding partially fills the knowledge gap concerning the immunogenic efficacy of the XBB.1.5 vaccine against current dominant variants, being instrumental in vaccine-strain decisions and insight into the evolutionary path of SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Animales , Humanos , COVID-19/inmunología , COVID-19/virología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Cricetinae , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Pruebas de Neutralización/métodos , Fluorescencia , Células HEK293 , Antígenos Virales/inmunología , Anticuerpos Monoclonales/inmunología , Mesocricetus
2.
J Virol ; : e0112924, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287389

RESUMEN

Because host kinases are key regulators of multiple signaling pathways in response to viral infections, we previously screened a kinase inhibitor library using rhabdomyosarcoma cells and human intestinal organoids in parallel to identify potent inhibitors against EV-A71 infection. We found that Rho-associated coiled-coil-containing protein kinase (Rock) inhibitor efficiently suppressed the EV-A71 replication and further revealed Rock1 as a novel EV-A71 host factor. In this study, subsequent analysis found that a variety of vascular endothelial growth factor receptor (VEGFR) inhibitors also had potent antiviral effects. Among the hits, Pazopanib, with a selectivity index as high as 254, which was even higher than that of Pirodavir, a potent broad-spectrum picornavirus inhibitor targeting viral capsid protein VP1, was selected for further analysis. We demonstrated that Pazopanib not only efficiently suppressed the replication of EV-A71 in a dose-dependent manner, but also exhibited broad-spectrum anti-enterovirus activity. Mechanistically, Pazopanib probably induces alterations in host cells, thereby impeding viral genome replication and transcription. Notably, VEGFR2 knockdown and overexpression suppressed and facilitated EV-A71 replication, respectively, indicating that VEGFR2 is a novel host dependency factor for EV-A71 replication. Transcriptome analysis further proved that VEGFR2 potentially plays a crucial role in combating EV-A71 infection through the TSAd-Src-PI3K-Akt pathway. These findings expand the range of potential antiviral candidates of anti-enterovirus therapeutics and suggest that VEGFR2 may be a key host factor involved in EV-A71 replication, making it a potential target for the development of anti-enterovirus therapeutics. IMPORTANCE: As the first clinical case was identified in the United States, EV-A71, a significant neurotropic enterovirus, has been a common cause of hand, foot, and mouth disease (HFMD) in infants and young children. Developing an effective antiviral agent for EV-A71 and other human enteroviruses is crucial, as these viral pathogens consistently cause outbreaks in humans. In this study, we demonstrated that multiple inhibitors against VEGFRs effectively reduced EV-A71 replication, with Pazopanib emerging as the top candidate. Furthermore, Pazopanib also attenuated the replication of other enteroviruses, including CVA10, CVB1, EV-D70, and HRV-A, displaying broad-spectrum anti-enterovirus activity. Given that Pazopanib targets various VEGFRs, we narrowed the focus to VEGFR2 using knockdown and overexpression experiments. Transcriptomic analysis suggests that Pazopanib's potential downstream targets involve the TSAd-Src-PI3K-Akt pathway. Our work may contribute to identifying targets for antiviral inhibitors and advancing treatments for human enterovirus infections.

3.
Microorganisms ; 12(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39203383

RESUMEN

Citrus tristeza virus (CTV) is a globally pervasive and economically significant virus that negatively impacts citrus trees, leading to substantial reductions in fruit yield. CTV occurs within the phloem of infected plants, causing a range of disease phenotypes, such as stem pitting (SP), quick decline (QD), and other detrimental diseases. Research on CTV is challenging due to the large size of its RNA genome and the diversity of CTV populations. Comparative genomic analyses have uncovered genetic diversity in multiple regions of CTV isolates' genomes, facilitating the classification of the virus into distinct genotypes. Despite these challenges, notable advancements have been made in identifying and controlling CTV strains through serological and molecular methods. The following review concentrates on the techniques of nucleic acid identification and serological analysis for various CTV isolates, assisting in the comparison and evaluation of various detection methods, which are crucial for the effective management of CTV diseases, and so contributes to the innovation and development of CTV detection methods.

4.
BMC Plant Biol ; 24(1): 688, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39026161

RESUMEN

BACKGROUND: Laccase (LAC) gene family plays a pivotal role in plant lignin biosynthesis and adaptation to various stresses. Limited research has been conducted on laccase genes in common beans. RESULTS: 29 LAC gene family members were identified within the common bean genome, distributed unevenly in 9 chromosomes. These members were divided into 6 distinct subclades by phylogenetic analysis. Further phylogenetic analyses and synteny analyses indicated that considerable gene duplication and loss presented throughout the evolution of the laccase gene family. Purified selection was shown to be the major evolutionary force through Ka / Ks. Transcriptional changes of PvLAC genes under low temperature and salt stress were observed, emphasizing the regulatory function of these genes in such conditions. Regulation by abscisic acid and gibberellins appears to be the case for PvLAC3, PvLAC4, PvLAC7, PvLAC13, PvLAC14, PvLAC18, PvLAC23, and PvLAC26, as indicated by hormone induction experiments. Additionally, the regulation of PvLAC3, PvLAC4, PvLAC7, and PvLAC14 in response to nicosulfuron and low-temperature stress were identified by virus-induced gene silence, which demonstrated inhibition on growth and development in common beans. CONCLUSIONS: The research provides valuable genetic resources for improving the resistance of common beans to abiotic stresses and enhance the understanding of the functional roles of the LAC gene family.


Asunto(s)
Lacasa , Familia de Multigenes , Phaseolus , Filogenia , Estrés Fisiológico , Phaseolus/genética , Phaseolus/enzimología , Phaseolus/fisiología , Lacasa/genética , Lacasa/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
5.
Nanoscale ; 16(30): 14402-14417, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39011858

RESUMEN

Sulfuration reactions dominate the synthesis of transition-metal dichalcogenides via chemical vapor deposition. A neglected critical issue is the evolution of crystal domain morphology and growth models caused by boundary layer development. In this study, we propose two growth models within a laminar flow field to investigate the kinetic mechanism of uniformly grown MoS2. We used supercritical fluid pre-deposition to obtain a well-distributed and low-crystallinity Mo precursor on the surface of a substrate to avoid non-stoichiometric supply in sulfuration. The development of the boundary layer was suppressed through mainstream force by adjusting the substrate slope angle. For growth within the underdeveloped laminar boundary layer, monolayer MoS2 with a size of 50 µm uniformly distributed on the full substrate with R = 85% (relative change in boundary layer thickness). Moreover, the growth constrained by surface chemical reactions tended to promote spatially uniform growth. However, within the fully developed laminar flow, the crystal domains preferentially grew vertically, which was attributed to the excessive crystal growth rate (g). Our results provide new insights into the controllable preparation of two-dimensional materials.

6.
Heliyon ; 10(12): e32684, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975071

RESUMEN

W-band (75-110 GHz) is a potential radio frequency band to provide long-distance wireless links for mobile data transmission. This paper proposes and experimentally demonstrates high-speed wireless transmission at W-band using photonics-aided method, including optical heterodyne, photonics-aided down-conversion without RF oscillator and coherent detection. A comparison between the photonics-aided method and the conventional electronic method employing solid-state electronic devices is conducted for the first time. The photonics-aided method is shown to offer advantages such as lower harmonic components, spur, reduced nonlinearity, and no local oscillator leakage, results in a 2.5 dB better performance of the photonic-aided W-band mm-wave transmitter compared to the electronic one. In the terms of receiver, the photonics-aided method can surpass the electronic method, with the help of larger electro-optical modulator bandwidth and lower drive voltage in the photonic down-conversion stage. Ultimately, using the photonics-aided method, a recorded equivalent transmission distance of 29 km@84 GHz and 45km@75.6GHz is achieved respectively for 1Gbaud QPSK signal.

7.
MedComm (2020) ; 5(8): e642, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39036342

RESUMEN

The poor prognosis observed in elderly individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a serious clinical burden and the underlying mechanism is unclear, which necessities detailed investigation of disease characteristics and research for efficient countermeasures. To simulate lethal coronavirus disease 2019 (COVID-19) in senescent human patients, 80-week-old male hamsters are intranasally inoculated with different doses of SARS-CoV-2 Omicron BA.5 variant. Exposure to a low dose of the Omicron BA.5 variant results in early activation of the innate immune response, followed by rapid viral clearance and minimal lung damage. However, a high dose of BA.5 results in impaired interferon signaling, cytokine storm, uncontrolled viral replication, and severe lung injury. To decrease viral load and reverse the deterioration of COVID-19, a new bio-mimic decoy called CoVR-MV is used as a preventive or therapeutic agent. Administration of CoVR-MV as a preventive or therapeutic intervention in the early stages of infection can effectively suppress viral load, regulate the immune response, and rescue animals from death and critical illness. These findings underscore the risk associated with SARS-CoV-2 Omicron BA.5 exposure in senescent hamsters and highlight the importance of early intervention to prevent disease progression.

8.
Antiviral Res ; 228: 105919, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851592

RESUMEN

Bacillus spp. has been considered a promising source for identifying new antimicrobial substances, including anti-viral candidates. Here, we successfully isolated a number of bacteria strains from aged dry citrus peel (Chenpi). Of note, the culture supernatant of a new isolate named Bacillus subtilis LjM2 demonstrated strong inhibition of influenza A virus (IAV) infection in multiple experimental systems in vitro and in vivo. In addition, the anti-viral effect of LjM2 was attributed to its direct lysis of viral particles. Further analysis showed that a protease which we named CPAVM1 isolated from the culture supernatant of LjM2 was the key component responsible for its anti-viral function. Importantly, the therapeutic effect of CPAVM1 was still significant when applied 12 hours after IAV infection of experimental mice. Moreover, we found that the CPAVM1 protease cleaved multiple IAV proteins via targeting basic amino acid Arg or Lys. Furthermore, this study reveals the molecular structure and catalytic mechanism of CPAVM1 protease. During catalysis, Tyr75, Tyr77, and Tyr102 are important active sites. Therefore, the present work identified a special protease CPAVM1 secreted by a new strain of Bacillus subtilis LjM2 against influenza A virus infection via direct cleavage of critical viral proteins, thus facilitates future biotechnological applications of Bacillus subtilis LjM2 and the protease CPAVM1.


Asunto(s)
Antivirales , Bacillus subtilis , Infecciones por Orthomyxoviridae , Animales , Ratones , Antivirales/farmacología , Infecciones por Orthomyxoviridae/virología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Péptido Hidrolasas/metabolismo , Perros , Ratones Endogámicos BALB C , Humanos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Células de Riñón Canino Madin Darby , Femenino , Proteínas Bacterianas/metabolismo
9.
J Fungi (Basel) ; 10(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38921413

RESUMEN

Arbuscular mycorrhizal (AM) fungi can enhance the uptake of soil nutrients and water by citrus, promoting its growth. However, the specific mechanisms underlying the action of AM fungi in promoting the growth of citrus were not fully elucidated. This study aimed to explore the role of AM fungi Funneliformis mosseae in the regulatory mechanisms of P. trifoliata growth. Pot experiments combined with non-targeted metabolomics methods were used to observe the growth process and changes in metabolic products of P. trifoliata under the conditions of F. mosseae inoculation. The results showed that F. mosseae could form an excellent symbiotic relationship with P. trifoliata, thereby enhancing the utilization of soil nutrients and significantly promoting its growth. Compared with the control, the plant height, stem diameter, number of leaves, and aboveground and underground dry weight in the F. mosseae inoculation significantly increased by 2.57, 1.29, 1.57, 4.25, and 2.78 times, respectively. Moreover, the root system results confirmed that F. mosseae could substantially promote the growth of P. trifoliata. Meanwhile, the metabolomics data indicated that 361 differential metabolites and 56 metabolic pathways were identified in the roots of P. trifoliata and were inoculated with F. mosseae. This study revealed that the inoculated F. mosseae could participate in ABC transporters by upregulating their participation, glycerophospholipid metabolism, aminoacyl tRNA biosynthesis, tryptophan metabolism and metabolites from five metabolic pathways of benzoxazinoid biosynthesis [mainly enriched in lipid (39.50%) and amino acid-related metabolic pathways] to promote the growth of P. trifoliata.

10.
Front Pharmacol ; 15: 1397656, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887558

RESUMEN

Objective: Gastric cancer (GC) is the world's third-leading cause of cancer-related mortality; the prognosis for GC patients remains poor in terms of a lack of reliable biomarkers for early diagnosis and immune therapy response prediction. Here, we aim to discover the connection between chemokine ligand 14 (CCL14) expression in the gastric tumor microenvironment (TME) and its clinical significance and investigate its correlation with immune cell infiltration. Methods: We assessed CCL14 mRNA expression and its interrelation with tumor-infiltrating immune cells (TILs) using bioinformatics analysis in gastric cancer. CCL14 protein expression, TILs, and immune checkpoints were detected by multiple immunohistochemistry analyses in gastric cancer tissue microarrays. Then, we conducted statistics analysis to determine the association between CCL14-related patient survival and immune cell infiltration (p < 0.05). Results: We found that the CCL14 protein was separately expressed in the carcinoma cells and TILs in stomach cancer tissues. The CCL14 protein was related to tumor differentiation and tumor depth and positively correlated with the presentation of LAG3 and PD-L1 in gastric cancer cells. In addition, the CCL14 protein in the TILs of gastric cancer tissues was related to Lauren's type cells, T cells (CD4+ and CD8+), and CD68+ macrophages in the TME. Kaplan-Meier survival and multivariate analyses showed that the CCL14 expression in gastric cancer cells was an independent prognostic factor. Conclusion: Our study illustrated that CCL14 is a poor prognosis biomarker in gastric cancer, which may be associated with the potential for immunotherapy.

11.
Nat Struct Mol Biol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890552

RESUMEN

Smc5/6 is a member of the eukaryotic structural maintenance of chromosomes (SMC) family of complexes with important roles in genome maintenance and viral restriction. However, limited structural understanding of Smc5/6 hinders the elucidation of its diverse functions. Here, we report cryo-EM structures of the budding yeast Smc5/6 complex in eight-subunit, six-subunit and five-subunit states. Structural maps throughout the entire length of these complexes reveal modularity and key elements in complex assembly. We show that the non-SMC element (Nse)2 subunit supports the overall shape of the complex and uses a wedge motif to aid the stability and function of the complex. The Nse6 subunit features a flexible hook region for attachment to the Smc5 and Smc6 arm regions, contributing to the DNA repair roles of the complex. Our results also suggest a structural basis for the opposite effects of the Nse1-3-4 and Nse5-6 subcomplexes in regulating Smc5/6 ATPase activity. Collectively, our integrated structural and functional data provide a framework for understanding Smc5/6 assembly and function.

12.
Acta Pharmacol Sin ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811774

RESUMEN

Exercise training effectively relieves anxiety disorders via modulating specific brain networks. The role of post-translational modification of proteins in this process, however, has been underappreciated. Here we performed a mouse study in which chronic restraint stress-induced anxiety-like behaviors can be attenuated by 14-day persistent treadmill exercise, in association with dramatic changes of protein phosphorylation patterns in the medial prefrontal cortex (mPFC). In particular, exercise was proposed to modulate the phosphorylation of Nogo-A protein, which drives the ras homolog family member A (RhoA)/ Rho-associated coiled-coil-containing protein kinases 1(ROCK1) signaling cascade. Further mechanistic studies found that liver-derived kynurenic acid (KYNA) can affect the kynurenine metabolism within the mPFC, to modulate this RhoA/ROCK1 pathway for conferring stress resilience. In sum, we proposed that circulating KYNA might mediate stress-induced anxiety-like behaviors via protein phosphorylation modification within the mPFC, and these findings shed more insights for the liver-brain communications in responding to both stress and physical exercise.

13.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702343

RESUMEN

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Animales , Ratones , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Viroterapia Oncolítica/métodos , Terapia Combinada , Vacunas de ARNm/inmunología , Melanoma Experimental/terapia , Melanoma Experimental/inmunología , Microambiente Tumoral/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T/inmunología , Humanos , Línea Celular Tumoral , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/administración & dosificación
14.
Small ; : e2401965, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739099

RESUMEN

Selective separation of ethylene and ethane (C2H4/C2H6) is a formidable challenge due to their close molecular size and boiling point. Compared to industry-used cryogenic distillation, adsorption separation would offer a more energy-efficient solution when an efficient adsorbent is available. Herein, a class of C2H4/C2H6 separation adsorbents, doped carbon molecular sieves (d-CMSs) is reported which are prepared from the polymerization and subsequent carbonization of resorcinol, m-phenylenediamine, and formaldehyde in ethanol solution. The study demonstrated that the polymer precursor themselves can be a versatile platform for modifying the pore structure and surface functional groups of their derived d-CMSs. The high proportion of pores centered at 3.5 Å in d-CMSs contributes significantly to achieving a superior kinetic selectivity of 205 for C2H4/C2H6 separation. The generated pyrrolic-N and pyridinic-N functional sites in d-CMSs contribute to a remarkable elevation of Henry selectivity to 135 due to the enhancement of the surface polarity in d-CMSs. By balancing the synergistic effects of kinetics and thermodynamics, d-CMSs achieve efficient separation of C2H4/C2H6. Polymer-grade C2H4 of 99.71% purity can be achieved with 75% recovery using the devised d-CMSs as reflected in a two-bed vacuum swing adsorption simulation.

15.
J Am Chem Soc ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38615326

RESUMEN

Two-dimensional (2D) alloys hold great promise to serve as important components of 2D transistors, since their properties allow continuous regulation by varying their compositions. However, previous studies are mainly limited to the metallic/semiconducting ones as contact/channel materials, but very few are related to the insulating dielectrics. Here, we use a facile one-step chemical vapor deposition (CVD) method to synthesize ultrathin Bi2SixGe1-xO5 dielectric alloys, whose composition is tunable over the full range of x just by changing the relative ratios of the GeO2/SiO2 precursors. Moreover, their dielectric properties are highly composition-tunable, showing a record-high dielectric constant of >40 among CVD-grown 2D insulators. The vertically grown nature of Bi2GeO5 and Bi2SixGe1-xO5 enables polymer-free transfer and subsequent clean van der Waals integration as the high-κ encapsulation layer to enhance the mobility of 2D semiconductors. Besides, the MoS2 transistors using Bi2SixGe1-xO5 alloy as gate dielectrics exhibit a large Ion/Ioff (>108), ideal subthreshold swing of ∼61 mV/decade, and a small gate hysteresis (∼5 mV). Our work not only gives very few examples on controlled CVD growth of insulating dielectric alloys but also expands the family of 2D single-crystalline high-κ dielectrics.

16.
Lancet Infect Dis ; 24(8): 922-934, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38614117

RESUMEN

BACKGROUND: The Oka varicella vaccine strain remains neurovirulent and can establish lifelong latent infection, raising safety concerns about vaccine-related herpes zoster. In this study, we aimed to evaluate the immunogenicity and safety of a skin-attenuated and neuro-attenuated varicella vaccine candidate (v7D vaccine). METHODS: We did this randomised, double-blind, controlled, phase 2a clinical trial in Jiangsu, China. Healthy children aged 3-12 years with no history of varicella infection or vaccination were enrolled and randomly assigned (1:1:1:1) to receive a single subcutaneous injection of the v7D vaccine at 3·3 log10 plaque forming units (PFU; low-dose v7D group), 3·9 log10 PFU (medium-dose v7D group), and 4·2 log10 PFU (high-dose v7D group), or the positive control varicella vaccine (vOka vaccine group). All the participants, laboratory personnel, and investigators other than the vaccine preparation and management staff were masked to the vaccine allocation. The primary outcome was assessment of the geometric mean titres (GMTs) and seroconversion rates of anti-varicella zoster virus immunoglobulin G (IgG) induced by different dose groups of v7D vaccine at 0, 42, 60, and 90 days after vaccination in the per-protocol set for humoral immune response analysis. Safety was a secondary outcome, focusing on adverse events within 42 days post-vaccination, and serious adverse events within 6 months after vaccination. This study was registered on Chinese Clinical Trial Registry, ChiCTR2000034434. FINDINGS: On Aug 18-21, 2020, 842 eligible volunteers were enrolled and randomly assigned treatment. After three participants withdrew, 839 received a low dose (n=211), middle dose (n=210), or high dose (n=210) of v7D vaccine, or the vOka vaccine (n=208). In the per-protocol set for humoral immune response analysis, the anti-varicella zoster virus IgG antibody response was highest at day 90. At day 90, the seroconversion rates of the low-dose, medium-dose, and high-dose groups of v7D vaccine and the positive control vOka vaccine group were 100·0% (95% CI 95·8-100·0; 87 of 87 participants), 98·9% (93·8-100·0; 87 of 88 participants), 97·8% (92·4-99·7; 91 of 93 participants), and 96·4% (89·8-99·2; 80 of 83 participants), respectively; the GMTs corresponded to values of 30·8 (95% CI 26·2-36·0), 31·3 (26·7-36·6), 28·2 (23·9-33·2), and 38·5 (31·7-46·7). The v7D vaccine, at low dose and medium dose, elicited a humoral immune response similar to that of the vOka vaccine. However, the high-dose v7D vaccine induced a marginally lower GMT compared with the vOka vaccine at day 90 (p=0·027). In the per-protocol set, the three dose groups of the v7D vaccine induced a similar humoral immune response at each timepoint, with no statistically significant differences. The incidence of adverse reactions in the low-dose, medium-dose, and high-dose groups of v7D vaccine was significantly lower than that in the vOka vaccine group (17% [35 of 211 participants], 20% [41 of 210 participants], and 13% [27 of 210 participants] vs 24% [50 of 208 participants], respectively; p=0·025), especially local adverse reactions (10% [22 of 211 participants], 14% [30 of 210 participants] and 9% [18 of 210 participants] vs 18% [38 of 208 participants], respectively; p=0·016). None of the serious adverse events were vaccine related. INTERPRETATION: The three dose groups of the candidate v7D vaccine exhibit similar humoral immunogenicity to the vOka vaccine and are well tolerated. These findings encourage further investigations on two-dose vaccination schedules, efficacy, and the potential safety benefit of v7D vaccine in the future. FUNDING: The National Natural Science Foundation of China, CAMS Innovation Fund for Medical Sciences, the Fundamental Research Funds for the Central Universities, and Beijing Wantai. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Asunto(s)
Anticuerpos Antivirales , Vacuna contra la Varicela , Varicela , Vacunas Atenuadas , Humanos , Vacuna contra la Varicela/inmunología , Vacuna contra la Varicela/administración & dosificación , Vacuna contra la Varicela/efectos adversos , Método Doble Ciego , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Masculino , Femenino , Preescolar , Niño , Anticuerpos Antivirales/sangre , Varicela/prevención & control , Varicela/inmunología , China , Herpesvirus Humano 3/inmunología , Inmunogenicidad Vacunal , Vacunación/métodos
17.
Heliyon ; 10(5): e27214, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463855

RESUMEN

Rhinoviruses (RVs) are major causes of the common cold and are related to severe respiratory tract diseases, leading to a considerable economic burden and impacts on public health. Available and stable viral resources of rhinoviruses for laboratory use are important for promoting studies on rhinoviruses and further vaccine or therapeutic drug development. Reverse genetic technology can be useful to produce rhinoviruses and will help to promote studies on their pathogenesis and virulence. In this study, rhinovirus A89, an RV-A species that has been found to be highly involved in hospitalization triggered by RV infections, was selected to construct an infectious clone based on its sequence as a representative. The viral mRNA produced by a T7 RNA transcript system was transfected into H1-HeLa cells, and the rescued RV-A89 viruses were harvested and confirmed by sequencing. The rescued RV-A89 induced a similar cytopathic effect (CPE) and shared almost identical growth kinetics curves with parental RV-A89. Moreover, 9A7, a prescreened monoclonal antibody against the parental RV-A89, had a good and specific reaction with the rescued RV-A89, and further characterization showed almost the same morphology and protein composition of both viruses; thus, recombinant RV-A89 with similar biological characterization and virulence to the parental virus was obtained. In summary, the infectious clone of RV-A89 was successfully established, and the development of reverse genetic technology for rhinovirus will provide a framework for further studies on rhinoviruses.

19.
Pharmacol Res ; 202: 107127, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438090

RESUMEN

Circular RNAs (circRNAs) represent a novel class of non-coding RNAs that play significant roles in tumorigenesis and tumor progression. High-throughput sequencing of gastric cancer (GC) tissues has identified circRNA BIRC6 (circBIRC6) as a potential circRNA derived from the BIRC6 gene, exhibiting significant upregulation in GC tissues. The expression of circBIRC6 is notably elevated in GC patients. Functionally, it acts as a molecular sponge for miR-488, consequently upregulating GRIN2D expression and promoting GC proliferation, migration, and invasion. Moreover, overexpression of circBIRC6 leads to increased GRIN2D expression, which in turn enhances caveolin-1 (CAV1) expression, resulting in autophagy deficiency due to miR-488 sequestration. This cascade of events significantly influences tumorigenesis in vivo. Our findings collectively illustrate that the CircBIRC6-miR-488-GRIN2D axis fosters CAV1 expression in GC cells, thereby reducing autophagy levels. Both circBIRC6 and GRIN2D emerge as potential targets for treatment and independent prognostic factors for GC patients.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Autofagia , Caveolina 1/genética , Caveolina 1/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Gástricas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA